
Lecture Notes (Syracuse University) Cryptography Basics: 1

Cryptography Basics

1 Secret Key Encryption

• Convention and Terms

– Plaintext:

– Ciphertext:

– Encryption:

– Decryption:

– Cryptanalysis:

• Secret Key Encryption is also called Symmetric Key Encryption: the key used for encryption is the
same as the key for decryption.

1.1 Classical Cryptosystems

• Monoalphabetic Substitution Cipher

– Units of plaintext are substituted with ciphertext according to a regular system. The ”units” may
be single letters, pairs of letters, triplets of letters, mixtures of the above, and so forth. The
receiver deciphers the text by performing an inverse substitution.

– Example:

Mapping: A->D, B->E, so on,
Encryption: HELLO -> KHOOR

– Drawbacks: this cipher can be easily broken using frequency analysis. In any language, the
frequencies of the characters are different. For example, in English, ’z’ appears much less
frequent than ’t’. Although each character is mapped to another character in the substitution
cipher, their frequencies can reveal themselves.

• Polyalphabetic Substitution Cipher: using multiple substitution alphabets.

– The Enigma machine is more complex but still fundamentally a polyalphabetic substitution ci-
pher.

• The Enigma Machines.

• Transposition Cipher

– Units of the plaintext are rearranged in a different and usually quite complex order, but the units
themselves are left unchanged. By contrast, in a substitution cipher, the units of the plaintext are
retained in the same sequence in the ciphertext, but the units themselves are altered.

– Example

Lecture Notes (Syracuse University) Cryptography Basics: 2

HELLO WORLD -> HLOOL --> HLOOLELWRD
ELWRD

• One-time pad (see wikipedia)

– Invented in 1917

– Used in low bandwidth

– Used in military

– The Hotline between US and former Soviet Union use one-time pad.

– A perfect encryption schemes, in terms of security.

1.2 DES and AES

• DES (Data Encryption Standard) history:

– Horst Feistel (IBM) created the ”Lucifer” block cipher as a result of research hobby.

– Later, ”Lucifer” became a major IBM initiative, and IBM revised it, named it DSD-1.

– 1974: IBM decided to respond to the call for encryption standard issued by NBS (National
Bureau of Standards). This means that IBM would be required to relinquish its patent rights,
essentially giving, not selling, the algorithm to the world.

– Early 1974, NSA offered to work with IBM on DSD-1. NSA’s all-star cryptanalysts would
analyze DSD-1 and qualify the algorithm. IBM should allow NSA to control the implementation
of the crypto system. IBM took the offer.

– Horst Feistel’s Lucifer specified a 128-bit key, but NSA did not like that, and cut it into 64 bits,
which is 8 bytes. IBM used one bit of each byte for ”parity checks”. This reduced the size of
the key to 56 bits.

– 1977, the final algorithm was accepted as a standard, called DES.

• DES Technical Details

– 56-bit key, 64-bit block, 16 rounds.

– Block Cipher: 64-bit block

– Brute-force attack 256

– 1998, Electronic Frontier Foundation (EFF) built a ”DES cracker” machine with $250,000. It
broke a DES key in 56 hours.

– 1999, distributed.net and the Electronic Frontier Foundation collaborated to publicly
break a DES key in 22 hours and 15 minutes.

– 3DES: C = E1 [D2 [E1 [P]]]

∗ 3DES use 2 keys (some use 3 keys), 112 bits are sufficient.
∗ How come 3DES did not become another standard?
∗ It is slow: basically, we have to run DES algorithm sequentially three times.

• AES (Advanced Encryption Standard)

Lecture Notes (Syracuse University) Cryptography Basics: 3

– In January 1997, NIST announced that they wished to choose a successor to DES to be known
as AES.

– In September 1997, NIST ofifcially calls for new algorithms for AES. The algorithms were all
to be block ciphers, supporting a block size of 128 bits and key sizes of 128, 192, and 256 bits.
Such ciphers were rare at the time of the announcement.

– In the nine months that followed, fifteen different designs were created and submitted from
several different countries.

– These algorithms were investigated by cryptographers. The investigation focused on security,
performance, feasibility, and other factors. During the process, some algorithms were eliminated
because of their weakness in security, some were eliminated because of the performance or other
factors.

– In August 1999, NIST announced that they were narrowing the field from fifteen to five. All five
algorithms, commonly referred to as ”AES finalists”, were designed by cryptographers consid-
ered well-known and respected in the community.

∗ Rijndael (Pronuciation ”Rain Doll”).
∗ IDEA (International Data Encryption Algorithm), used by PGP
∗ Blowfish (Bruce Schneier).
∗ RC5 (Rivest).
∗ CAST-128, used by PGP.

– These finalists went through a further round of intense analysis and cryptanalysis.

– On October 2, 2000, NIST announced that Rijndael had been selected as the proposed AES.

• Note: The security of AES and many other well-known encryption algorithms (except the one-time
pad) has never been proven. They are considered secure because they have been thoroughly investi-
gated by many cryptographers, and so far nobody could break them.

1.3 Attacking a Cryptosystem

• Ciphertext-Only Attack: attackers try to find the plaintext from a ciphertext.

• Known-Plaintext Attack: the attacker has obtained some (plaintext, ciphertext) pairs, and they use
these known pairs to find out the other things that they do not know, such as the key and the unknown
plaintexts.

• Chosen-Plaintext Attack: attackers can select any plaintext, and ask the encryption system to produce
a ciphertext. The attackers can do this for many times. Attakers then try to use the information to
break the encryption scheme.

In the real life, all the above three scenarios can happen. Therefore, to become a strong cryptosystem, a
cryptosystem should resist all the above three attacks.

• Question: can the classical cryptosystems resist the above attacks?

Lecture Notes (Syracuse University) Cryptography Basics: 4

2 Block Cipher Modes of Operation

Block cipher operates on blocks of fixed length, for example, DES operates on 64-bit blocks, and AES
operates on 128-bit blocks. To encrypt a message longer than the block size, the message has to be divided
into multiple blocks, so block ciphers can operate on each of them. There are many ways to apply block
ciphers on these blocks; These different methods are called modes of operation. Details are described in
Wikipedia. Figures in this section are from Wikipedia (we only show the encryption part, the decryption
part can be easily derived based on the encryption part).

• Electronic Code Book Mode (ECB)

– The mode diagram

– Problem: duplicate blocks and rearrange attack.

• Cipher Block Chaining (CBC)

– IV: Initialization Vector. Does not need to be secret.

– Even if the same message is sent repeatedly, the ciphertext will be completely different each
time due to IV.

– Has been the most commonly used mode of operation.

Lecture Notes (Syracuse University) Cryptography Basics: 5

– Parallelization

∗ Encryption cannot be parallelized
∗ Decryption can be parallelized

• Cipher feedback (CFB)

– Turn a block cipher into a stream cipher

– Parallelization

∗ Encryption cannot be parallelized
∗ Decryption can be parallelized

• Output feedback (OFB)

– Also turns a block cipher into a stream cipher

– Parallelization

Lecture Notes (Syracuse University) Cryptography Basics: 6

∗ Encryption/Decryption cannot be parallelized, but because the plaintext or ciphertext is only
used for the final XOR, the block cipher operations may be performed in advance, allowing
the final step to be performed in parallel once the plaintext or ciphertext is available.

• Counter (CTR)

– Also turns a block cipher into a stream cipher

– The counter can be any simple function which produces a sequence which is guaranteed not to
repeat for a long time, although an actual counter is the simplest and most popular

– CTR allows a random access property for decryption

Padding. Because a block cipher works on units of a fixed size, but messages come in a variety of lengths,
some modes (mainly CBC) require that the final block be padded before encryption. Several padding
schemes exist.

• Add null bytes to the palintext. Care must be taken so the original length of the plaintext can be
recovered.

• The original DES method: add a single one bit, followed by enough zero bits to fill out the block; if
the message ends on a block boundary, a whole padding block will be added.

• PKCS#5 Standard: each padding octet contains the number of octets that are added in the padding.
The following is an example for a 128-bit block cipher that uses the PKCS#5 padding scheme (in the
first example, 0x09 is used in the padding, because 9 octets are added in the padding; in the second
example, 0x10 is used because 16 octets are added):

Original plaintext 1: 0a23bac45092f7
Padded plaintext (PKCS#5): 0a23bac45092f7090909090909090909

Original plaintext 2: 0a23bac45092f793273a7fe9093eaa88
Padded plaintext (PKCS#5): 0a23bac45092f793273a7fe9093eaa08

10101010101010101010101010101010

Lecture Notes (Syracuse University) Cryptography Basics: 7

• CFB, OFB and CTR modes do not padding. The size of ciphertext is the same as the size of plaintext.
This characteristic of stream ciphers makes them suitable for applications that require the encrypted
ciphertext data to be the same size as the original plaintext data, and for applications that transmit data
in streaming form where it is inconvenient to add padding bytes.

Lecture Notes (Syracuse University) Cryptography Basics: 8

3 One-Way Hash Function

3.1 One-Way Hash Function

• One-way Hash Function

– Reduce variable-length input to fixed-length (128 or 160 bit) output

– Notation: M⇒ H(M)

• One Way Property

– Easy: M⇒ H(M).

– Computationally Infeasible: H(M)⇒M.

– Implications:

∗ Even if M1 and M2 has just a single bit difference, H(M1) and H(M2) will be very differ-
ent.
∗ If you know M and H(M), but after you change a single bit in H(M), you will not be able to

find a M’ that can generate this modified hash value.

• Collision Free Property: computationally infeasible to find two messages that hash to the same hash
value.

– For m-bit hash, using the brute-force attack, it takes only about 2m/2 messages, chosen at ran-
dom, before one would find two with the same value (like the birthday problem).

– MD5 is broken: it is found not to be collision free!

• Why do we want collision-free property?

– Example: We can construct M1 and M2, such that h(M1) = h(M2). The meaning of M1 and
M2 can be exactly the opposite.

– M1 =“Alice owes Kevin $100”. M2 =“Alice owes Kevin $1M”. Alice signs h(M1), but not
h(M2). If h(M1) = h(M2), Alice will be in trouble.

– Even if the hash is not collision free, but finding such a meaningful M1 and M2 is not easy.
However, it might be possible to find h(M1, r1) = h(M2, r2), where r1 and r2 are random
numbers.

• Hash Algorithms

– MD2 (Message Digest) – by Rivest

– MD3 does exist, but it was superseded by MD4 before it was ever published or used.

– MD4 (Message Digest) – by Rivest Faster than MD2, but a version of MD4 is found to be weak.

– MD5 (Message Digest) – by Rivest

∗ A little slower than MD4.
∗ 128-bit hash

– SHA (Secure Hash Algorithm)

∗ 1993 NIST published SHA
∗ 1995 a never published flaw is found in SHA.

Lecture Notes (Syracuse University) Cryptography Basics: 9

∗ SHA-1 is proposed: most popular one.
∗ SHA-1: 160-bit hash.
∗ SHA-2: SHA-256, SHA-384, and SHA-512.

– MD5, SHA-0, SHA-1 are not collision free

∗ Collisions in SHA-0 in 239 operations.
∗ Collisions in the full SHA-1 in 252 hash operations, much less than the brute-force attack

of 280 operations based on the hash length.
∗ The time complexity for finding a collisions in MD5 is 232.

3.2 MAC: Message Authentication Code

• Message Authentication: making sure that the message is indeed sent by the claimed sender, not by
other parties or modified by other parties.

• MAC algorithms

– Can be constructed from hash functions (e.g. HMAC)

– Can also be constructed from block cipher algorithms (e.g. OMAC, CBC-MAC and PMAC).

• HMAC: Hashed MAC (or keyed hash)

HMCK(m) = h((K ⊕ opad) || h((K ⊕ ipad)||m))

– Need a secret key (SHA, MD5 do not need a secret key)

– Use one-way Hash function h as a black-box building block. A one-way hash function is con-
ducted by iterating a basic compression function on blocks of data. We denote by B the byte-
length of such blocks (e.g. B=64 for MD5 ahd SHA1).

– ipad = 0x363636...3636 and opad = 0x5c5c5c...5c5c. Their length is B, i.e. the size of hash
block. The values of ipad and opad are not critical to the security of the algorithm, but were
defined in such a way to have a large Hamming distance from each other and so the inner and
outer keys will have fewer bits in common.

– K is a secret key padded to length B with extra zeros. If K is longer than B byptes, we will use
hash(K) as the key.

– HMAC-MD5, HMAC-SHA1.

– Need to know the secret key in order to verify.

3.3 Applications of One-Way Hash Function

• Pseudorandom number generator (PRNG): One-way hash function can be used for this purpose.
This is done by combining a (secret) random seed with a counter and hashing it: h(seed, c), h(seed, c+
1), h(seed, c + 2), and so on.

• Stream Cipher: Use one-way hash function as a pseudorandom number generator to genrate a stream
of psuedorandom numbers. XOR the plaintext with this stream of numbers. In decryption, the same
stream can be constructed using the counter and the seed (the seed is the encryption key).

Lecture Notes (Syracuse University) Cryptography Basics: 10

• Password Verification: To verify passwords, we do not need to store plain-text passwords in a
database. We can store the hashes of passwords in the database. This way, even if the whole database
is compromised by adversaries, the password information is still safe if a strong one-way hash func-
tion was used.

• Making Commitment: Alice and Bob plays a simple online game. Each person provides an integer.
If the sum of the two integers is odd, Alice wins; otherwise Bob wins. However, whoever gives out the
number first will definitely lose. Using one-way hash function, they can commit their numbers first,
and then release the numbers to each other. Nobody can change his/her mind after the commitment,
unless he/she can find a collision of the hash function.

• Detecting Changes: To ensure system security, it is necessary to routinely check whether the impor-
tant files/configurations are modified. We can use one-way hash to achieve this. This is the main idea
behind the Tripwire idea.

• One-way hash chain

– The S/KEY one-time password scheme.

– Broadcast authentication

• Merkle Tree

– Timestamping a document

∗ Publish hash in a magazine or newspaper.
∗ One hash per document: expensive.
∗ One hash per 1000 documents: cost saving.
∗ Using Merkle Tree can achieve such a cost saving.

– Broadcast authentication in lossy channels

∗ Signing each packet is expensive
∗ Hashing all of them together and then hash the result cannot tolerate the loss of packet.
∗ Using Merkle Tree can solve this problem.

Lecture Notes (Syracuse University) Cryptography Basics: 11

4 Public-Key Cryptography

4.1 History

• First asymmetric key algorithm was invented, secretly, by Clifford Cocks (then a recent mathematics
graduate and a new staff member at GCHQ in the UK) early in the 1970s.

• 1976, Diffie and Hellman postulated this system without demonstrating that such algorithms exist.

• 1978, Rivest, Shamir and Adleman all then at MIT invented RSA, which is a reinvention of Cocks
scheme.

• Since then, several other asymmetric key algorithms have been developed, but the most widely known
remains Cocks/RSA.

• Another algorithm is ElGamal (Taher ElGamal), which relies on the (similar and related) difficulty of
the discrete logarithm problem.

• A third is a group of algorithms based on elliptic curves, first discovered by Neal Koblitz in the mid
’80s.

• NSA has also claimed to have invented public-key cryptography, in the 1960s; however, there is
currently (as of 2004) little supporting evidence for their claims.

• Merkle-Hellman (MH) was one of the earliest public key cryptosystems invented by Ralph Merkle
and Martin Hellman in 1978. Although its ideas are elegant, and far simpler than RSA, it has been
broken. (Merkle-Hellman Knapsacks).

• Stories behind RSA: Steven Levy’s Crypto book

4.2 Diffie-Hellman Key Exchange

• Diffie-Hellman Key Exchange

– The algorithm was first published by Whitfield Diffie and Martin Hellman in 1976

– Discrete Logarithms in a finite field is a hard problem: find x where ax = b (mod n)

– The protocol

1. Alice and Bob agree on a finite cyclic group G of size p and a generating element g in G.
2. Alice sends gx mod p to Bob.
3. Bob sends gy mod p to Alice.
4. Alice computes (gy)x mod p.
5. Bob computes (gx)y mod p.
6. Both Alice and Bob get gxy mod p.

– g can be small.

– x and y must be large.

• Turn Diffie-Hellman Key Exchange to a Public-Key System

– Public Key: Alice publishes g, p, and (gx mod p) as her public key.

– Private Key: g, p, and x.

Lecture Notes (Syracuse University) Cryptography Basics: 12

– Encryption:

1. Bob generates y, and generates a key K = (gx)y mod p.
2. Bob encrypts M using the key K and a symmetric key encryption method, such as AES.
3. Bob sends the ciphertext and gy mod p to Alice.

– Decryption:

1. Alice generates K = (gy)x mod p.
2. Alice decrypts the ciphertext using K.

• ElGamal algorithm: this algorithm is similar to the above algorithm, but it does not rely on any
symmetric key encryption scheme.

1. Let h = gx mod p.

2. Public key: (p, g, h)

3. Private key: x

4. Encryption: generate a random k, let c1 = gk mod p, c2 = m ∗ hk mod p.

5. Decryption: c2/cx
1 mod p. It should be noted that c2/cx

1 = m ∗ hk/gkx = m mod p.

4.3 RSA Algorithm

• Mathematics background for RSA algorithm

– Extended Euclidean algorithm: Given x, find y, such that x · y = 1 mod m. The Extended
Euclidean algorithm can efficiently find the solution to this problem.

– Euler’s theorem: For any number a relatively prime to n = pq, a(p−1)(q−1) = 1 mod pq.

∗ Why is this very useful?
∗ Let z = k(p− 1)(q − 1) + r, we have az = ak(p−1)(q−1) ∗ ar = ar mod pq.
∗ In other words: If z = r mod (p− 1)(q − 1), then az = ar mod pq.
∗ Special case: If z = 1 mod (p− 1)(q − 1), then az = a mod pq.
∗ We can use Euler’s theorem to simply az mod pq.

• RSA Algorithm.

– Let n = pq, where p and q are two large primes.

– Public key (e, n), where e is relative prime to (p− 1)(q − 1).

– Private key (d, n), such that ed = 1 mod (p− 1)(q− 1). d can be calculated using the Extended
Euclidean algorithm.

– Encryption: c = me mod n.

– Decryption: cd = (me)d = med mod n.

• Security of RSA: depends on the hardness of factoring: factoring n = p ∗ q is hard when n is large.

• RSA Example

– Let n = 22 = 2 ∗ 11.

– Let e = 3, find d, such that e ∗ d = 1 mod 10. We get d = 7.

Lecture Notes (Syracuse University) Cryptography Basics: 13

– Encrypting M = 7: 73 = 49 ∗ 7 = 5 ∗ 7 = 13 mod 22.

– Decrypting: 137 = 132 ∗ 132 ∗ 132 ∗ 13 = (15 ∗ 15) ∗ (15 ∗ 13) = 5 ∗ 19 = 7 mod 22

– Sign M = 9: 97 = 92 ∗ 92 ∗ 92 ∗ 9 = 15 mod 22.

• RSA Performance Issues:

– Exponentiating with big numbers: For example, let us compute 12332 mod 678. We do not need
to do 32 multiplies, instead, we do the following:

1232 = 15129 = 213 mod 678,

1234 = 2132 = 621 mod 678,

1238 = 6212 = 537 mod 678,

12316 = 5372 = 219 mod 678,

12332 = 2192 = 501 mod 678.

– Similarly, we can easily compute 12354 mod n. 54 = (1100110)2 = (((((1) ∗ 2 + 1) ∗ 2) ∗
2 + 1) ∗ 2 + 1) ∗ 2. Therefore, 12354 = (((((123)2 ∗ 123)2)2 ∗ 123)2 ∗ 123)2. We will do
module operations at each step, whenever the intermediate results are larger than n. We will not
compute a huge number 12354 and then do one module operation at the end. The total cost is 8
multiplies and 8 divides (the divides are caused by the module operations).

– Performance: if the exponent is 512 bit, the number of multiplication and divides is linear to
512.

• Choice of e in RSA.

– e does not need to be a large number.

– In practice, 3 and 65537 are often selected as the value of e.

• Efficiency of RSA: very costly

– 100 times slower than DES (software)

– 1000 times slower than DES (hardware)

5 Digital Signature

5.1 Digital Signature Algorithms

• Motivation of digital signature

– Physical signature

– Properties: Authenticity, unforgeable, not reusable, unalterable, can’t be repudiated.

• RSA Signature Scheme

– Public key (verifying key): (e, n).

– Private key (signing key): (d, n).

– Sign: Md mod n.

Lecture Notes (Syracuse University) Cryptography Basics: 14

– Verify: (Md)e mod n. The result should be equal to M if the signature is authentic.

• DSA (Digital Signature Algorithm):

– 1991, Proposed by NIST as a DSS (Digital Signature Standard)

– Criticism from RSA and its supporters

– Developed by NSA

– Royalty-free

– DSA is slower than RSA

• Avoid reusing digital signature: Sign with timestamps.

• Sign the hash. In practice, we only sign the hash of the message, not the message itself, because the
message may be large, and signing is quite slow for large message.

5.2 Public-Key Certificate

• Associating public keys with identities.

– The Man-in-the-middle attack

∗ How to make sure Bob’s Public Key is really Bob’s?
∗ Binding the identity with the public key

– Hierarchical certificate authority (eg, X.509),

– A local trust model (eg, SPKI),

– A statistical web of trust (eg, PGP and GPG).

• Certificates

– Consist of: holder’s id, holder’s public key, CA’s signature, expiration date

– X.509 certificate

∗ The certificate can be obtained from a public known database
∗ Tree Structure
∗ If you trust one, you can verify all of them.

__
A Sample X.509 Certificate:

Data:
Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

OU=Certification Services Division,
CN=Thawte Server CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,

Lecture Notes (Syracuse University) Cryptography Basics: 15

OU=FreeSoft, CN=www.freesoft.org/emailAddress=...
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
68:9f

6 Applications of Public-Key Encryption and Digital Signature

• Key Exchange using public keys

– Goal: Alice and Bob want to agree upon a key K, which can be used as session key.

– Session key: only exists for the duration of the communication.

– Alice sends her public key to Bob, and Bob sends his to Alice.

• Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL).

– Based on PKI.

– Provide security for communications over networks such as the Internet.

– Widely used in applications like web browsing, electronic mail, instant messaging and voice-
over-IP (VoIP).

– A prominent use of TLS is for securing World Wide Web traffic carried by HTTP to form
HTTPS.

– OpenSSL is an open source implementation of the SSL and TLS protocols. The core library
(written in the C programming language) implements the basic cryptographic functions and
provides various utility functions.

Lecture Notes (Syracuse University) Cryptography Basics: 16

7 Implementing Cryptography Correctly is Not Easy: Case Studies

7.1 Diebold Electronic Voting System: Case Study

Background: Municipalities and states throughout the U.S. are adopting paperless electronic voting sys-
tems to replace outdated punch-card and mechanical voting systems. A number of different vendors have
designed such kind of e-voting systems. A team of researchers at Johns Hopkins University conducted a
security analysis on one of the e-voting systems, the Diebold system. The report pointed out a number of
places where cryptography is implemented incorrectly. We will use this report as our case study to under-
stand what might go wrong when integrating cryptography in a real-world system. We refer to this report as
the JHU Report in this lecture note.

• Key management

JHU Report: In the Diebold code we analyzed, both the keys for the smartcard and the keys used to
encrypt the votes were static entries in the source code. This means that the same keys are used on
every voting device. Thus, an attacker who was able to compromise a single voting device would have
access to the keys for all other voting devices running the same software.

#define DESKEY ((des_key*)"F2654hD4")

From the CVS logs, we see this particular key has been used without change since December 1998,
when the CVS tree for AccuVote-TS version 3 began, and we assume that the key was in use much
before 14 that. Although Jones reports that the vendor may have been aware of the key management
problems in their code since at least 1997 [16, 17], our findings show that the design flaw was never
addressed.

• Encryption algorithm

JHU Report: A second set of problems has to do with the way that the Diebold code encrypts the
votes and audit logs. The files that hold the votes are encrypted using the Data Encryption Standard
(DES) algorithm in CBC mode. There are problems with the use of both DES and the CBC mode, as
we describe below.

In their response to “allegation 44”, Diebold states that “there are stronger forms of compression
than DES, but the authors’ implication that the keys can be recovered ‘in a short time’ is deliberately
misleading.” We assume that Diebold meant to claim that there are stronger encryption algorithms
available, as DES is not a compression algorithm.

• Integrity

JHU Report: Instead of using such a MAC, the Diebold code uses a non-cryptographic checksum
called a CRC to detect whether a file has been tampered with. This is completely insecure as is
discussed on page 15 of our paper. The use of CRCs instead of MACs has long been documented in
the security literature as a very serious mistake.

In Diebold system, before being encrypted, a 16-bit cyclic redundancy check (CRC) of the plaintext
data is computed. This CRC is then stored along with the ciphertext in the file and verified whenever
the data is decrypted and read. This process in handled by the ReadRecord and WriteRecord functions
in TSElection/RecordFile.cpp. Since the CRC is an unkeyed, public function, it does not provide
any meaningful integrity protection for the data. In fact, by storing it in an unencrypted form, the
purpose of encrypting the data in the first place (leaking no information about the contents of the

Lecture Notes (Syracuse University) Cryptography Basics: 17

plaintext) is undermined. Standard industry practice would be to first encrypt the data to be stored
and then to compute a keyed cryptographic checksum (such as HMAC-SHA1) of the ciphertext. This
cryptographic checksum could then be used to detect any tampering with the plaintext. Note also
that each entry has a timestamp, which can be used to detect reordering, although sequence numbers
should also be added to detect record deletion.

• Mode

JHU Report: We note that “DES is being used in CBC mode which requires an initialization vector
to ensure its security.” We go on to show that the Diebold code does not provide the necessary
initialization vectors. A detailed explanation of this problem is highly technical; we refer the interested
reader to A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of
Operation.

Second, DES is being used in CBC mode which requires a random initialization vector to ensure its
security. The implementation here always uses zero for its IV. This is illustrated by the call to DesCB-
CEncrypt in TSElection/RecordFile.cpp; since the second to last argument is NULL, DesCBCEncrypt
will use the all-zero IV. To correctly implement CBC mode, a source of strong random numbers must
be used to generate a fresh IV for each encryption. Suitably strong random numbers can be derived
from many different sources, ranging from custom hardware to accumulated observations of user
behavior.

• Random number

JHU Report: While the voter’s identity is not stored with the votes, each vote is given a serial number
... generated by a linear congruential random number generator ... seeded with static information.

Diebold Response: There is no need for “security” here. The only intent of this code is to pseudo-
randomize the order of ballots for purposes of display and reporting, as required in some states.

Jones (Doug Jone from the University of Iowa also responded to Diebold’s reponse): Diebold is
wrong. There is need for security here. If the sequence of pseudo-random numbers is known, and the
sequence in which voters actually entered the booth has been recorded (as a poll-watcher can easily
do), then we can recover any particular voter’s ballot from the report of individual ballots. This allows
an insider working at election central to check this report (I’d use a pocket camera to take photos of the
report), in cooperation with a poll watcher, to confirm whether the paid voters have earned their pay
by voting the required way. Vote buying schemes that rely on insiders at the vote count cooperating
with poll-watchers date back many years, and therefore, strong randomization schemes are justified
here! I’ve worked as a poll watcher, I know that perfect records are hard to keep, but I also know that
I can correct my records if I can talk a few voters into signing their ballots with pre-selected write-in
votes or funny patterns of yes-no votes on the judicial retention ballot.

• Smartcards

JHU Report: Upon reviewing the Diebold code, we observed that the smartcards do not perform any
cryptographic operations. This, in and of itself, is an immediate red flag. One of the biggest ad-
vantages of smartcards over classic magnetic-stripe cards is the smartcards ability to perform crypto-
graphic operations internally, and with physically protected keys. Because of a lack of cryptography,
there is no secure authentication of the smartcard to the voting terminal. This means that nothing
prevents an attacker from using his or her own homebrew smartcard in a voting terminal.

One might naturally wonder how easy it would be for an attacker to make such a homebrew smartcard.
First, we note that user-programmable smartcards and smartcard readers are available commercially

Lecture Notes (Syracuse University) Cryptography Basics: 18

over the Internet in small quantities and at reasonable prices. Second, an attacker who knows the pro-
tocol spoken between voting terminals and legitimate smartcards could easily implement a homebrew
card that speaks the same protocol.

7.2 DVD Protection: Case Study

• The process:

1. Each DVD player has a master key, which is unique to the DVD player manufacturer. This key
is called the player key.

2. The palyer reads an encrypted disk key from the DVD, and uses the player key to decrypt the
disk key. Since there are many player keys out there (each manufacture has one), the DVD must
contain a copy of the encrypted disk key for each player key.

3. The player reads the encrypted title key for the file to be played. The DVD will likely contain
multiple files, each with its own title key. The player uses the descrypted disk key to decrypt the
title key.

4. The player used the title key to descrypt the content.

• Encryption algorithm: Content Scrambling System (CSS).

– Its security depends on its secrecy: in 1999, Jon Johansen (with another two anonymous
people) disassembled a software DVD player to uncover the descrambling algorithm. They then
wrote and released a C code called DeCSS.

– The encryption key is only 40-bit and not all possible 40-bit numbers can be keys: A high-
end home computer in 1999 running optimized code could brute-force it within 24 hours, and
modern computers can now brute-force it in a few seconds or less.

• Software player has its own unlock key. This is where the problem is.

Lecture Notes (Syracuse University) Cryptography Basics: 19

– The key must be stored in the memory.
– The contents must appear in the memory unencrypted.
– Users can reverse engineering the code.
– Users can debug the code and find the keys in the memory.
– Making reverse engineering a crime is not going to be a solution. Unfortunately, this is where

the DVD industry is going.

7.3 Mistakes in Encryption: Not using cryptography when it is needed

• The Wall Street Journal (December 17, 2009): Insurgents Hack U.S. Drones.

Militants in Iraq have used $26 off-the-shelf software to intercept live video feeds from
U.S. Predator drones, potentially providing them with information they need to evade or
monitor U.S. military operations.
Senior defense and intelligence officials said Iranian-backed insurgents intercepted the
video feeds by taking advantage of an unprotected communications link in some of the
remotely flown planes’ systems. Shiite fighters in Iraq used software programs such as
SkyGrabber – available for as little as $25.95 on the Internet – to regularly capture drone
video feeds, according to a person familiar with reports on the matter.
U.S. officials say there is no evidence that militants were able to take control of the drones
or otherwise interfere with their flights. Still, the intercepts could give America’s ene-
mies battlefield advantages by removing the element of surprise from certain missions and
making it easier for insurgents to determine which roads and buildings are under U.S.
surveillance.
......
The potential drone vulnerability lies in an unencrypted downlink between the unmanned
craft and ground control. The U.S. government has known about the flaw since the U.S.
campaign in Bosnia in the 1990s, current and former officials said. But the Pentagon
assumed local adversaries wouldn’t know how to exploit it, the officials said.”
......
Officials stepped up efforts to prevent insurgents from intercepting video feeds after the
July incident. The difficulty, officials said, is that adding encryption to a network that
is more than a decade old involves more than placing a new piece of equipment on
individual drones. Instead, many components of the network linking the drones to their
operators in the U.S., Afghanistan or Pakistan have to be upgraded to handle the changes.
......
Today, the Air Force is buying hundreds of Reaper drones, a newer model, whose video
feeds could be intercepted in much the same way as with the Predators, according to
people familiar with the matter. A Reaper costs between $10 million and $12 million each
and is faster and better armed than the Predator.

7.4 Mistake in Encrytion: Inventing your own encryption algorithm and keep it secret

• Good encryption algorithms such as DES, AES, and Blowfish take many years to develop by smart
minds who specialize on cryptography, and then they were scrutinized by many other smart minds.
The reason why we see these names is because nobody has broken them so far. All the bad ones have
already been eliminated.

Lecture Notes (Syracuse University) Cryptography Basics: 20

• The selection process for AES: http://en.wikipedia.org/wiki/Advanced_Encryption_
Standard_process

• If you ever want to invent your own encryption algorithm for your software within a few days or even
a few months, think about what those algorithms have gone through. If this does not stop you, then
look at the following cases:

– Case 1: DVD encryption http://www.schneier.com/essay-193.html.

– Case 2: WEP: is a deprecated algorithm to secure IEEE 802.11 wireless networks. Beginning
in 2001, several serious weaknesses were identified by cryptanalysts with the result that today a
WEP connection can be cracked with readily available software within minutes.

– Case 3: The GSM encryption algorithm was broken. http://www.gsmarena.com/the_
gsm_encryption_algorithm_was_broken-news-1347.php.

– Case 4: 3G GSM encryption cracked in less than two hours http://www.engadget.com/
2010/01/15/3g-gsm-encryption-cracked-in-less-than-two-hours/

– Case 5: Philip Zimmermann, Beware of Snake Oil. http://www.philzimmermann.
com/EN/essays/SnakeOil.html.

• Keeping your algorithm secret is not going to help much: reverse engineering.

– Why Security-Through-Obscurity Won’t Work. http://slashdot.org/features/980720/
0819202.shtml

– Principle

Principle: Security of encryption should be based on the secrecy of the keys, not the
secrecy of the algorithm.

• If you still want to try, then you are either a cryptographer who simply wants to develop a better
encryption algorithm, or you are simply crazy.

7.5 Mistake in Encryption: Bad Key Management

• Hardcode the keys in the program, e.g. Diebold.

• Principles

